Telegram Group & Telegram Channel
Forwarded from AI Pulse (Mohammad)
شرکت متا نسل چهارم از مدل‌های زبانی Llama را معرفی کرده که با توانایی‌های چندوجهی و پشتیبانی از کانتکست بسیار بلند، رقیب بسیار جدی‌ای برای مدل‌های اوپن سورس محسوب میشن.

در این مجموعه سه مدل معرفی شده‌: Llama 4 Scout، Llama 4 Maverick و Llama 4 Behemoth. دو مدل اول به صورت Open Weight عرضه شدن و برای استفاده در پلتفرم‌هایی مثل WhatsApp، Messenger، Instagram Direct و نسخه وب Meta AI در دسترس قرار گرفتن.

مدل Scout با ۱۷ میلیارد پارامتر فعال و ۱۶ متخصص، قوی‌ترین مدل توی کلاس خودش به‌شمار میاد و با وجود توانایی‌های چشمگیر، روی یک GPU از نوع H100 اجرا می‌شه. این مدل با داشتن پنجره کانتکست ۱۰ میلیون توکنی، عملکردی بهتر از مدل‌هایی مثل Gemma 3 و Gemini 2.0 Flash-Lite ارائه می‌ده.

مدل Maverick هم که از همون تعداد پارامتر فعال اما با ۱۲۸ متخصص بهره می‌بره، در تست‌های گسترده از GPT-4o و Gemini 2.0 پیشی گرفته و با مدل‌هایی مثل DeepSeek v3 در زمینه‌های استدلال و کدنویسی رقابت می‌کنه؛ اون هم با نصف تعداد پارامتر فعال.

قدرت این مدل‌ها تا حد زیادی مدیون مدل Behemoth هست؛ یک مدل بزرگ ۲ تریلیونی با ۲۸۸ میلیارد پارامتر فعال که نقش "معلم" رو در فرایند آموزش ایفا کرده. Behemoth در بنچمارک‌های ریاضی، کدنویسی و زبان‌های مختلف عملکردی بهتر از مدل‌های شاخصی مثل GPT-4.5، Claude 3.7 و Gemini 2.0 Pro داشته. هرچند هنوز به‌طور کامل عرضه نشده، اما متا وعده داده به‌زودی اطلاعات بیشتری درباره‌ی اون منتشر کنه.

در طراحی این مدل‌ها، معماری Mixture of Experts به‌کار گرفته شده که با فعال‌سازی بخشی از پارامترها به‌ازای هر توکن، هم بازدهی محاسباتی رو افزایش داده و هم کیفیت مدل رو نسبت به مدل‌های متراکم بهبود داده. Llama 4 همچنین به‌صورت چندوجهی طراحی شده و می‌تونه همزمان ورودی‌های متنی و تصویری رو پردازش کنه. در فاز آموزش، از داده‌های متنی، تصویری و ویدیویی در مقیاس بالا استفاده شده و تکنیک‌های جدیدی مثل MetaP برای بهینه‌سازی هایپرپارامترها به‌کار رفته.

در مرحله پس‌آموزش، متا از روش‌های جدیدی مثل یادگیری تقویتی آنلاین و بهینه‌سازی مستقیم ترجیحی برای بهبود مهارت‌های مدل در استدلال، مکالمه و چندوجهی‌بودن استفاده کرده.

مدل Maverick با بهره‌گیری از این روش‌ها، عملکرد چشمگیری در درک تصویر، تولید متن، پاسخ به پرسش‌های بصری و وظایف پیچیده نشون داده. مدل Scout هم با وجود حجم کمتر، در زمینه‌هایی مثل کدنویسی، پردازش کانتکست بلند، و درک تصویری، نتایجی بهتر از تمام نسل‌های قبلی Llama ارائه می‌ده.

در نهایت، متا تأکید کرده که این مدل‌ها با بالاترین استانداردهای ایمنی توسعه داده شدن. ابزارهایی مثل Llama Guard، Prompt Guard و سامانه‌ی تست GOAT برای جلوگیری از خروجی‌های نامناسب یا سؤاستفاده از مدل‌ها ارائه شده و توسعه‌دهندگان می‌تونن این ابزارها رو متناسب با نیاز خودشون تنظیم کنن. همچنین تلاش‌هایی هم برای کاهش سوگیری‌های سیاسی و اجتماعی در پاسخ‌های مدل صورت گرفته تا Llama 4 بتونه دیدگاه‌های مختلف رو به‌درستی درک و بیان کنه.

@aipulse24



tg-me.com/learning_with_m/149
Create:
Last Update:

شرکت متا نسل چهارم از مدل‌های زبانی Llama را معرفی کرده که با توانایی‌های چندوجهی و پشتیبانی از کانتکست بسیار بلند، رقیب بسیار جدی‌ای برای مدل‌های اوپن سورس محسوب میشن.

در این مجموعه سه مدل معرفی شده‌: Llama 4 Scout، Llama 4 Maverick و Llama 4 Behemoth. دو مدل اول به صورت Open Weight عرضه شدن و برای استفاده در پلتفرم‌هایی مثل WhatsApp، Messenger، Instagram Direct و نسخه وب Meta AI در دسترس قرار گرفتن.

مدل Scout با ۱۷ میلیارد پارامتر فعال و ۱۶ متخصص، قوی‌ترین مدل توی کلاس خودش به‌شمار میاد و با وجود توانایی‌های چشمگیر، روی یک GPU از نوع H100 اجرا می‌شه. این مدل با داشتن پنجره کانتکست ۱۰ میلیون توکنی، عملکردی بهتر از مدل‌هایی مثل Gemma 3 و Gemini 2.0 Flash-Lite ارائه می‌ده.

مدل Maverick هم که از همون تعداد پارامتر فعال اما با ۱۲۸ متخصص بهره می‌بره، در تست‌های گسترده از GPT-4o و Gemini 2.0 پیشی گرفته و با مدل‌هایی مثل DeepSeek v3 در زمینه‌های استدلال و کدنویسی رقابت می‌کنه؛ اون هم با نصف تعداد پارامتر فعال.

قدرت این مدل‌ها تا حد زیادی مدیون مدل Behemoth هست؛ یک مدل بزرگ ۲ تریلیونی با ۲۸۸ میلیارد پارامتر فعال که نقش "معلم" رو در فرایند آموزش ایفا کرده. Behemoth در بنچمارک‌های ریاضی، کدنویسی و زبان‌های مختلف عملکردی بهتر از مدل‌های شاخصی مثل GPT-4.5، Claude 3.7 و Gemini 2.0 Pro داشته. هرچند هنوز به‌طور کامل عرضه نشده، اما متا وعده داده به‌زودی اطلاعات بیشتری درباره‌ی اون منتشر کنه.

در طراحی این مدل‌ها، معماری Mixture of Experts به‌کار گرفته شده که با فعال‌سازی بخشی از پارامترها به‌ازای هر توکن، هم بازدهی محاسباتی رو افزایش داده و هم کیفیت مدل رو نسبت به مدل‌های متراکم بهبود داده. Llama 4 همچنین به‌صورت چندوجهی طراحی شده و می‌تونه همزمان ورودی‌های متنی و تصویری رو پردازش کنه. در فاز آموزش، از داده‌های متنی، تصویری و ویدیویی در مقیاس بالا استفاده شده و تکنیک‌های جدیدی مثل MetaP برای بهینه‌سازی هایپرپارامترها به‌کار رفته.

در مرحله پس‌آموزش، متا از روش‌های جدیدی مثل یادگیری تقویتی آنلاین و بهینه‌سازی مستقیم ترجیحی برای بهبود مهارت‌های مدل در استدلال، مکالمه و چندوجهی‌بودن استفاده کرده.

مدل Maverick با بهره‌گیری از این روش‌ها، عملکرد چشمگیری در درک تصویر، تولید متن، پاسخ به پرسش‌های بصری و وظایف پیچیده نشون داده. مدل Scout هم با وجود حجم کمتر، در زمینه‌هایی مثل کدنویسی، پردازش کانتکست بلند، و درک تصویری، نتایجی بهتر از تمام نسل‌های قبلی Llama ارائه می‌ده.

در نهایت، متا تأکید کرده که این مدل‌ها با بالاترین استانداردهای ایمنی توسعه داده شدن. ابزارهایی مثل Llama Guard، Prompt Guard و سامانه‌ی تست GOAT برای جلوگیری از خروجی‌های نامناسب یا سؤاستفاده از مدل‌ها ارائه شده و توسعه‌دهندگان می‌تونن این ابزارها رو متناسب با نیاز خودشون تنظیم کنن. همچنین تلاش‌هایی هم برای کاهش سوگیری‌های سیاسی و اجتماعی در پاسخ‌های مدل صورت گرفته تا Llama 4 بتونه دیدگاه‌های مختلف رو به‌درستی درک و بیان کنه.

@aipulse24

BY Learning With M







Share with your friend now:
tg-me.com/learning_with_m/149

View MORE
Open in Telegram


Learning With M Telegram | DID YOU KNOW?

Date: |

How Does Bitcoin Work?

Bitcoin is built on a distributed digital record called a blockchain. As the name implies, blockchain is a linked body of data, made up of units called blocks that contain information about each and every transaction, including date and time, total value, buyer and seller, and a unique identifying code for each exchange. Entries are strung together in chronological order, creating a digital chain of blocks. “Once a block is added to the blockchain, it becomes accessible to anyone who wishes to view it, acting as a public ledger of cryptocurrency transactions,” says Stacey Harris, consultant for Pelicoin, a network of cryptocurrency ATMs. Blockchain is decentralized, which means it’s not controlled by any one organization. “It’s like a Google Doc that anyone can work on,” says Buchi Okoro, CEO and co-founder of African cryptocurrency exchange Quidax. “Nobody owns it, but anyone who has a link can contribute to it. And as different people update it, your copy also gets updated.”

The Singapore stock market has alternated between positive and negative finishes through the last five trading days since the end of the two-day winning streak in which it had added more than a dozen points or 0.4 percent. The Straits Times Index now sits just above the 3,060-point plateau and it's likely to see a narrow trading range on Monday.

Learning With M from in


Telegram Learning With M
FROM USA